Gaussian Kernel Based Classification Approach for Wheat Identification
نویسندگان
چکیده
منابع مشابه
Gaussian Kernel Based Classification Approach for Wheat Identification
Agriculture holds a pivotal role in context to India, which is basically agrarian economy. Crop type identification is a key issue for monitoring agriculture and is the basis for crop acreage and yield estimation. However, it is very challenging to identify a specific crop using single date imagery. Hence, it is highly important to go for multi-temporal analysis approach for specific crop ident...
متن کاملKernel Structure Discovery for Gaussian Process Classification
This project was done at the Cambridge Machine Learning Group, as part of the larger effort to build an Automated Statistician. Given a data set, the Automated Statistician should run different methods to suggest interpretable hypotheses and the potential models to use for this data. In this project, we have shown that automatic kernel discovery can be achieved for GP classification. We impleme...
متن کاملGaussian kernel optimization for pattern classification
This paper presents a novel algorithm to optimize the Gaussian kernel for pattern classification tasks, where it is desirable to have well-separated samples in the kernel feature space. We propose to optimize the Gaussian kernel parameters by maximizing a classical class separability criterion, and the problem is solved through a quasi-Newton algorithm by making use of a recently proposed decom...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملA new kernel-based approach for linear system identification
This paper describes a new kernel-based approach for linear system identification of stable systems. We model the impulse response as the realization of a Gaussian process whose statistics, differently from previously adopted priors, include information not only on smoothness but also on BIBO-stability. The associated autocovariance defines what we call a stable spline kernel. The corresponding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
سال: 2014
ISSN: 2194-9034
DOI: 10.5194/isprsarchives-xl-8-671-2014